Structure and mechanism of the SGLT family of glucose transporters
Posted on: Monday, March 14th, 2022 | ID: #585

  • Kleinzeller, A. & Kotyk, A. Membrane Transport and Metabolism (Publishing House of the Czechoslovak Academy of Sciences, 1961).

  • Wright, E. M., Loo, D. D. F. & Hirayama, B. A. Biology of human sodium glucose transporters. Physiol. Rev. 91, 733–794 (2011).

    CAS  Google Scholar 

  • Hopfer, U., Nelson, K. & Isselbacher, K. J. Specific glucose transport in isolated brush border membranes from rat small-intestine. J. Biol. Chem. 248, 25–32 (1973).

    CAS  Google Scholar 

  • Wright, E. M. Renal Na+–glucose cotransporters. Am. J. Physiol. Renal Physiol. 280, F10–F18 (2001).

    CAS  Google Scholar 

  • Hsia, D. S., Grove, O. & Cefalu, W. T. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr. Opin. Endocrinol. Diabetes Obes. 24, 73–79 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hummel, C. S. et al. Glucose transport by human renal Na+/d-glucose cotransporters SGLT1 and SGLT2. Am. J. Physiol. Cell Physiol. 300, C14–C21 (2011).

    CAS  Google Scholar 

  • Turk, E., Zabel, B., Mundlos, S., Dyer, J. & Wright, E. M. Glucose galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature 350, 354–356 (1991).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirschhorn, N. et al. Decrease in net stool output in cholera during intestinal perfusion with glucose-containing solutions. N. Engl. J. Med. 279, 176–181 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeuthen, T., Gorraitz, E., Her, K., Wright, E. M. & Loo, D. D. F. Structural and functional significance of water permeation through cotransporters. Proc. Natl Acad. Sci. USA 113, E6887–E6894 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loo, D. D. et al. Passive water and ion transport by cotransporters. J. Physiol. 518, 195–202 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faham, S. et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321, 810–814 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahlgren, W. Y. et al. Substrate-bound outward-open structure of a Na+-coupled sialic acid symporter reveals a new Na+ site. Nat. Commun. 9, 1753 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • Leung, D. W., Turk, E., Kim, O. & Wright, E. M. Functional expression of the Vibrio parahaemolyticus Na+/galactose (vSGLT) cotransporter in Xenopus laevis oocytes. J. Membr. Biol. 187, 65–70 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canul-Tec, J. C. et al. Structure and allosteric inhibition of excitatory amino acid transporter 1. Nature 544, 446–451 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, T. et al. Apical localization of sodium-dependent glucose transporter SGLT1 is maintained by cholesterol and microtubules. Acta Histochem. Cytochem. 39, 155–161 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghezzi, C., Calmettes, G., Morand, P., Ribalet, B. & John, S. Real-time imaging of sodium glucose transporter (SGLT1) trafficking and activity in single cells. Physiol. Rep. 5, e13062 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Penmatsa, A., Wang, K. H. & Gouaux, E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503, 85–90 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagnon, D. G., Bissonnette, P. & Lapointe, J. Y. Identification of a disulfide bridge linking the fourth and the seventh extracellular loops of the Na+/glucose cotransporter. J. Gen. Physiol. 127, 145–158 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, E. M. in Genetic Diseases of the Kidney (eds Lifton, R. P. et al.) 131–140 (2009).

  • Sala-Rabanal, M. et al. Bridging the gap between structure and kinetics of human SGLT1. Am. J. Physiol. Cell Physiol. 302, C1293–C1305 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bisignano, P. et al. Inhibitor binding mode and allosteric regulation of Na+–glucose symporters. Nat. Commun. 9, 5245 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopal, E. et al. Expression of slc5a8 in kidney and its role in Na+-coupled transport of lactate. J. Biol. Chem. 279, 44522–44532 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyauchi, S., Gopal, E., Fei, Y. J. & Ganapathy, V. Functional identification of SLC5A8, a tumor suppressor down-regulated in colon cancer, as a Na+-coupled transporter for short-chain fatty acids. J. Biol. Chem. 279, 13293–13296 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, D. & Morris, M. E. The drug of abuse γ-hydroxybutyrate is a substrate for sodium-coupled monocarboxylate transporter (SMCT) 1 (SLC5A8): characterization of SMCT-mediated uptake and inhibition. Drug Metab. Dispos. 37, 1404–1410 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gopal, E. et al. Transport of nicotinate and structurally related compounds by human SMCT1 (SLC5A8) and its relevance to drug transport in the mammalian intestinal tract. Pharm. Res. 24, 575–584 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H. et al. SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. Proc. Natl Acad. Sci. USA 100, 8412–8417 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganapathy, V. et al. Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. AAPS J. 10, 193–199 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diez-Sampedro, A., Lostao, M. P., Wright, E. M. & Hirayama, B. A. Glycoside binding and translocation in Na+-dependent glucose cotransporters: comparison of SGLT1 and SGLT3. J. Membr. Biol. 176, 111–117 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choe, S., Rosenberg, J. M., Abramson, J., Wright, E. M. & Grabe, M. Water permeation through the sodium-dependent galactose cotransporter vSGLT. Biophys. J. 99, L56–L58 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenberg, R. J., Handford, C. A., Campbell, E. M., Ryan, R. M. & Yool, A. J. Water and urea permeation pathways of the human excitatory amino acid transporter EAAT1. Biochem. J 439, 333–340 (2011).

    CAS  Google Scholar 

  • Turk, E. et al. Molecular characterization of Vibrio parahaemolyticus vSGLT: a model for sodium-coupled sugar cotransporters. J. Biol. Chem. 275, 25711–25716 (2000).

    CAS  Google Scholar 

  • Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pardon, E. et al. A general protocol for the generation of nanobodies for structural biology. Nat. Protoc. 9, 674–693 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon, C. et al. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat. Struct. Mol. Biol. 25, 289–296 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hediger, M. A., Ikeda, T., Coady, M., Gundersen, C. B. & Wright, E. M. Expression of size-selected mRNA encoding the intestinal Na/glucose cotransporter in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 84, 2634–2637 (1987).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung, D. W., Loo, D. D., Hirayama, B. A., Zeuthen, T. & Wright, E. M. Urea transport by cotransporters. J. Physiol. 528 251–257 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    PubMed  Google Scholar 

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Heymann, J. B. & Belnap, D. M. Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, 3–18 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    CAS  PubMed  Google Scholar 

  • The PyMOL Molecular Graphics System v.2.0. (Schrödinger, 2017).

  • Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  • Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    CAS  PubMed  Google Scholar 

  • Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lomize, M. A., Lomize, A. L., Pogozheva, I. D. & Mosberg, H. I. OPM: orientations of proteins in membranes database. Bioinformatics 22, 623–625 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson, M. P., Friesner, R. A., Xiang, Z. & Honig, B. On the role of the crystal environment in determining protein side-chain conformations. J. Mol. Biol. 320, 597–608 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Betz, R. Dabble (v2.6.3). Zenodo https://zenodo.org/record/836914#.YZz6AWDP2M8 (2017).

  • Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guvench, O., Hatcher, E. R., Venable, R. M., Pastor, R. W. & Mackerell, A. D. CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J. Chem. Theory Comput. 5, 2353–2370 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Case, D. A., et al. AMBER 2018 (Univ. California, San Francisco, 2018).

  • Hopkins, C. W., Le Grand, S., Walker, R. C. & Roitberg, A. E. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 11, 1864–1874 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jean-Paul Ryckaert, G. C., Herman, J. C. B. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977).

    ADS  Google Scholar 

  • Roe, D. R. & Cheatham, T. E. III. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • William Humphrey, A. D., Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Google Scholar 

  • Nguyen, C. N., Young, T. K. & Gilson, M. K. Grid inhomogeneous solvation theory: hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril. J. Chem. Phys. 137, 044101 (2012).

    ADS  PubMed  PubMed Central  Google Scholar 

  • Ramsey, S. et al. Solvation thermodynamic mapping of molecular surfaces in AmberTools: GIST. J. Comput. Chem. 37, 2029–2037 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Source